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Abstract. In this letter a new approach t o  the investigation of the effects of quenched 
randomness in the experiments on kinetic roughening is introduced by considering a 
stochastic differential equation for the surface development with a multiplicative noise. 
We argue that this type of noise corresponds to the experimental situation in cases when 
the development of the interface is dominated by pinning forces. By numerically integrating 
the proposed equation we have obtained (i)  surfaces remarkably similar to those observed 
in the experiments and (ii) a scaling of the surface width as a funclion of time with an 
exponent being in an excellent agreement with the measured value. Variations ofthe model, 
C ~ O S S O V ~ ~ S  and questions concerning the apDlicability of additive noise to wetting experi- 
ments are also discussed. 

During the past few years a considerable amount of interesting results has accumulated 
about the far from equilibrium growth of fractal surfaces [l, 21. From the available 
data it is clear that perhaps the most exciting recent question regarding the growth of 
rough interfaces is the apparent discrepancy between the experimental results and the 
corresponding predictions based on the most general theoretical approaches and related 
simulations. In particular, for the ( 1  t 1)-dimensional case the renormalization group 
treatment of the KPZ equation [3] and large scale numerical studies of the simplest 
aggregation models [4] give U = f and p = f, where these exponents describe the scaling 
of the width of the surface [SI 

w(x ,  t ) - t p f ( t / x - ’ q  ( 1 )  
as a function of time f and the linear extension x of the surface over which the width 
is calculated. 

On the other hand, the existing experimental estimates obtained for the interface 
of viscous flows and the surface of bacteria colonies range between 0.63 and 0.81 [6-81 
for LY and give p = 0.65 [7]. These values are in clear conflict with the predictions $ 
and f. There are many more experimental systems (see, e.g., [2]) in which the measured 
roughness exponents differ from the KPZ values. However, in this paper we shall mainly 
be concentrating on the process ofthe advancement of a wetting fluid in inhomogeneous 
media [6,7]. 

Recently a few specific models have been proposed to eliminate the above mentioned 
disagreement. Resuits in pari consisieni wiih ihe experimenis have been obtained by 
assuming power law distributed noise amplitudes [9-131, studying a simplified KPZ 
type equation with quenched noise [14], by changing the growth rule in various growth 
models [15-181 and by modifying the equation itself 119-211 in order to better account 
for the physical conditions determining the process of kinetic roughening. 
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The purpose of the present letter is to introduce a new concept of studying the 
actual physical situation by considering a stochastic differential equation for the surface 
development with a multiplicative noise. Our goals are (i) to make assumptions which 
are as close to the experimental conditions as possible, (ii) to numerically investigate 
the resulting equation and (iii) to compare the obtained behaviour with that observed 
in the experiments. 

We propose that the development of the interface h(x ,  l ) ,  e.g., in the experiments 
on quasi-( 1 + 1)-dimensional viscous flows, is described by the equation 

dh 
-= (V2h+u(1  + ( V h ) 2 ) ” 2 ) ( p  + 7) 
J I  

where p > 0 is some constant, U is the normal velocity and the term r) > 0 corresponds 
to quenched noise with no correlations, i.e., 

(?(x, h)T(X’,  h ’ ) )=  C 8 ( x - x ’ ) s ( h - h ‘ ) .  (3) 
We do not assume that the distribution of the noise amplitudes is Gaussian with a 
zero mean; it would be equivalent to  supposing that flat parts of the interface would 
move backward at places with 7 < -p. Rather, we shall assume that r )  follows some 
other simple distribution, e.g., the Poisson or the uniform distribution. In this way, we 
can avoid (unlike in the case of the Gaussian distribution) the occurrence of the 
unphysical values p + 7 i 0. 

To support the particular form in which the noise term enters (2) let us consider 
the experiment on the two-phase flow of viscous fluids in porous media. We are 
interested in the case when the more viscous, wetting fluid advances due to the presence 
of capillary forces and the interface exhibits kinetic roughening. Under such circum- 
stances the system can be considered as a network of randomly interconnected channels 
of widely distributed sizes and geometry. The motion of the wetting fluid is determined 
by the simultaneous effects of surface tension, capillary forces and local flow properties 
(permeabilities of the channels). The advancement of the interface at a given point is 
proportional to the local driving force and the permeability (Darcy’s law), just as the 
electric current j is proportional to the conductivity U and the electric field E, j = Eu. 
In  our case the driving forces are (i) the wetting or capillary force which would produce 
velocity U for unit permeability and (ii) the forces due to the surface tension which 
are represented by the term V 2 h  (we assume that there is no extra pressure applied to 
the penetrating fluid). Thus, (2) is equivalent to 

U, = F E  (4) 

where !ls is the vc!acity af the s.rf.ce in the vertica! direction, E is the random!y 
changing local permeability and F denotes a general driving force. Although here we 
used the wetting experiment as an example to justify the necessity to  take into account 
multiplicative noise, we think that in many other situations (e.g., motion of domain 
walls in magnetic systems with random fields and pinning of charge density waves) 
our approach should also be considered. 

Next we would like to make a few relevant comments on the other aspects of the 
proposed equation. (i) The term ~ ( l + ( V h ) ~ ) ” ~  is included in its full form (instead of 
its linearized version used in the KPZ equation), because in the actual experiments at 
the majority of the points along the interface the condition (Vhl<< 1 is not satisfied. 
This statement becomes very relevant when pinning forces are present and the interface 
develops deep valleys with IVhJ>>1 playing a determining role in the process of 
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roughening. (ii) Naturally, (2) can be extended by including other terms, e.g., an 
explicit additive noise 5 wbicb can be independent of or proportional to 7,  and a term 
A(Vh)’ instead of (Vh)’ only ( A  is a parameter). In this case (2) reads as 

J h  
- = ( V 2 h + u ( l  +A(Vh)2)’’2)(p+ v ) + l .  
J t  

In fact, even without including additive noise explicitly, in (2) or in the above equation 
the term u ( l  +A(Vh)2)1’2q has a contrbution which corresponds to additive noise. If 
both types of noises are present, one may expect that in the limit of very large system 
sizes and long times the additive noise will dominate the growth since the various 
derivatives of the surface become very small on a coarse grained scale. The detailed 
discussion of this important question cannot be included in the present work and 
should be addressed separately. The only feature we note here is that choosing A, U << 1 
in (3) the additive noise can be made arbitrarily small and the behaviour is determined 
by the multiplicative nature of the noise. This regime then is likely to cross over to 
the additive noise-dominated case after arbitrarily long characteristic time. 

Now we are in the position to describe the development of the interface in terms 
of kinetic roughening dominated by pinning forces. At places where p + 7 << 1, the 
motion of the interface slows down dramatically. These points can be considered as 
temporarily pinned. However, as in all existing experiments on growth (with no 
evaporation), after some time the surface passes by this place or region of low 
permeability and advances further without a complete stop. 

An interesting special case of the noise is when 7 depends only on x (this possibility 
is also discussed in [15], for additive noise). An existing aspect of the physics is 
reflected by this choice: the motion of the interface is determined not only by the 
conditions at the surface, but also by the permeability of regions already left behind 
(which may partially block the supply of additional fluid). A possible realization of 
this case includes a Hele-Shaw cell with parallel grooves of different depth engraved 
onto one of the glass plates. 

Before describing our numerical studies of (2) we briefly discuss the applicabilily 
of the KPZ approach to the experiments on wetting fronts. According to the KPZ 
equation the development of the surface is described by 

@ = V 2 h  +A/2(Vh)’+ u + ~ ( x ,  t )  
a t  

where A is a parameter which for wetting flows is larger than 0. As was pointed out 
by Kessler et al [14], for the interpretation of the experiments it is more appropriate 
to use a quenched noise in (6) ,  ~ ( x ,  h ) ,  and this is the version we shall discuss below, 

At the places where the surface is locally almost pinned (slowed down) ah/Jt<< 1. 
On the other hand, at the same locations V’h +A/2(Vh)’>> 1. According to (6) this can 
hold only if -(U+ 7) >> 1 in these points. We argue that large negative values of the 
noise 7 are not physical, because this would mean that a flat surface in the given point 
would move with a large velocity in the direction opposife to the growth. Since the 
fluid is wetting, its spontaneous motion cannot be reverse. 

Nevertheless, the equation (6) with quenched noise can be solved numerically 
making various assumptions for 7. Without mentioning the details, we would like to 
point out that such an approach does not lead to surfaces similar to the experimental 
ones (e.g., in figure 2 of [14] the axes are not isotropic; if the scales along the axes 
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were the same (as in the experimental pictures) the calculated surface would look 
almost like a straight line). 

Since the main goal of this work is to understand what are the most relevant factors 
determining the behaviour of experimental surfaces, we have numerically studied (2) 
for times and system sizes compatible to those which have been realized in [6] and 
[7]. It is straightforward to integrate (2) numerically; the associated questions are 
discussed in [14] (quenched case) and [22] (for time dependent noise). For simplicity 
we assumed that 1) was distributed uniformly on (0,13. Figure 1 shows the calculated 
surfaces for the following set of parameters: system size L = 800, p = 0,0001 and U = 0.5. 
It should be pointed out that in the present case the mesh size used in the course of 
discretizing the x dependence in (2) has a physical meaning: it corresponds to the 
lower cutoff length scale of the fluctuations of the media (for example, it can be 
identified with the diameter of the glass beads in the experiments of [6] and [7], since 
1) is assigned to the grid points of a square lattice with mesh size Ax). In f a finer 
discretization is used, and the actual value of h is a quasi-continuous variable. 

Figure 1. Subsequent 'snapshots' of the evolving surface obtained by numerically inlegrat- 
ing (2)  for p = 0.0001 and U = 0.5 for a system of linear size L = 800. 

Next we investigated w(L, I ) ,  the time dependence of the width of the entire system. 
The results shown in figure 2 indicate that at early times there exists a non-trivial scaling 

w-tP (7) 

with p 10.65 in surprisingly good agreement with the only published expenmental 
result. This value also agrees with the corresponding estimates obtained in [16] and 
[17], but is different from 2 published in [lS]. The crossover to a behaviour described 
by a smaller exponent p = 0.28+0.05 is well pronounced and according to our simula- 
tions the crossover time 1, does not depend on L and roughly scales as a function of 
p as PO.'. Our preliminary calculations indicate that for larger system sizes and longer 
times the value 0.28 tends to increase and we expect it to approach f in the asymptotic 
limit. This limit can be reliably investigated only by using supercomputers, and the 
corresponding studies will be reported later. 



Letter to the Editor L767 

-3 

I" t 

Figure 2. The lime dependence of the surface width 
w for various values of the parameter p related to 
the strength of the pinning forces (smaller p cones- 
ponds to stronger pinning). There is a well defined 
crmover at a time I,, depending on p. from a scaling 
according IO an exponent p =0.65 10 a scaling with 
B about 0.28. 

Figure 3. The behaviour of the surface width w as 
a function of the length x over which its average was 
calculated. This sequence Ofcurves was obtained for 
a gelenion of increasing e l i l p ~ d  !imps (from ho!tnm 
to top). The slope of the tol)most C U N ~  for larne x 
values is close to 0.5, 

The spatial scaling of w also raises interesting questions. According to our calcula- 
tions there exist no well defined, extended straight parts in the log w versus log x plots 
(see figure 3). On the other hand, the curves can be approximately described in terms 
of an initial larger slope of about 0.7 crossing over to a behaviour corresponding to a 
surface having a roughness exponent equal to the universal value f .  

Finally, we briefly discuss the case when 17 depends on x only. Figure 4 shows a 
typical series of surfaces for L = 800, p = 0.0001 and U = 0.5. In this model there is well 
pronounced scaling both in time and space, with numerically determined exponents 
close to 1 (a = p - 0.96 f 0.06). 

In conclusion, we have proposed an approach which is intended to take into account 
the experimental conditions during two-phase fluid flows in inhomogeneous media as 

Figure 4. Series of surfaces obtained as a function of time for the model with '1 depending 
on x only (see the text). 
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well as possible. By introducing a stochastic partial differential equation with a 
multiplicative noise describing the development of the interface we have been able to 
obtain (i) surfaces remarkably similar to those observed in the experiments and (ii) a 
scaling behaviour of the surface width with an exponent being in an excellent agreement 
with the measured value. 

There are three recent models designed to simulate growth in the presence of 
pinning forces. In the very interesting approach by Parisi [15] the noise is additive, 
and the questions raised in this paper have to be considered when discussing its 
applicability to wetting experiments. The growth models proposed in [lti] and [17] 
are somewhat closer to the approach introduced in this paper. For example, the blocking 
sites of [ 161 correspond to places with very small p + 7. However, the actual mechanisms 
of growth and in the cluster growth and the present pictures are rather different. 

Usefu! discussinns with T F(w2, M rclrdar, J Kertisz a.?d v rr UorvAt!! Ere 
acknowledged. 
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